
GPU Point-to-Point
Communication
Purushotham V. Bangalore
James R. Cudworth Professor, Department of Computer Science
Associate Director, Center for Understandable Performant Exascale Communication Systems

5-Year Project Roadmap

PY 2020-21 PY 2021-22 PY 2022-23

Partitioned P2P GPU SupportPartitioned P2P Prototype

Research Areas

Abstraction
Development

Performance
Modeling and
Visualization

Neighbor Comm.
Optimization

Neighbor Comm.
Prototyping

Partition/Neighbor
Communication Integration

Partition/Neighbor Comm. GPU Support

GPU Halo Roofline Communication Analysis

Partitioned + Neighbor
Comm. Modeling

GPU Neighbor Comm.
Modeling

Partitioned Comm.
Modeling

GPU Communication Choices

Option #0 – Using CPU for communication

Compute

Post sends & recvs

Waitall

Compute

Post sends & recvs

Waitall

CPU CPU GPU

Option #1 – Using CUDA-aware MPI

Compute

Post sends & recvs

Waitall

Compute

Post sends & recvs

Waitall

CPU CPU GPU

CUDA-aware MPI

CUDA-aware MPI Advantages

Images: NVIDIA Developer Resources

GPUDirect

Option #2 – Explicit Packing with CUDA-aware MPI

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU GPU

CUDA-aware MPI

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU

Evaluation using Higrad
Derek Schafer
Patrick Bridges

Higrad

9

• LANL Fortran+OpenACC Application
• Main communication involves a regular halo exchange of the mesh

• Implicitly sends the edges and corners during the exchange
• Uses MPI Datatypes for sending faces

• Test the potential gains with minimal changes to code
• Original version copied data to the GPU, executed the compute

kernel, copied the data back to CPU, used MPI for communication,
and copied the data back to the GPU (Option #0)

• Executed the application using CUDA-aware MPI (data is on GPU
and sent from GPU – Option #1)

Evaluation – Option #0 vs. #1

10

Xena (UNM) Chicoma (LANL)
GPU: Nvidia K40M
300 by 300 by 375 grid
4 nodes, 1 rank per node, 1 GPU per node

OpenMPI 3.1.5 (PGI Compilers)

GPU: Nvidia A100
500 by 500 by 625
1 Node, 4 ranks per node, 4 GPUs per
node, 1 GPU per task*
OpenMPI 3.1.5 (PGI Compilers)

Time (minutes) Base CUDA-aware MPI

Total 16.8169 64.45

Communication 2.9039 49.7395

Communication % 17.2678% 77.1754%

Base CUDA-aware MPI

16.097 107.8532

3.2639 95.653

20.2764% 88.6882%

Evaluation – Option #0 vs. #1 vs. #2

11

Execution Time Base CUDA-aware MPI GPU Packing Kernel

Total Time (minutes) 16.8169 64.45 14.0814

Communication Time (minutes) 2.9039 49.7395 0.3323

Communication % 17.2678% 77.1754% 2.3596%

Execution Time Base CUDA-aware MPI GPU Packing Kernel

Total Time (minutes) 16.097 107.8532 12.867

Communication Time (minutes) 3.2639 95.653 0.5189

Communication % 20.2764% 88.6882% 4.0329%

Xena (UNM)

Chicoma (LANL)

MPI Datatype Performance on GPUs

MPI Datatypes on GPUs

13

200x200x200 array of five variables

MPI Datatypes on GPUs

14

200x200x200 array of five variables

MPI Datatypes on GPUs

15

200x200x200 array of five variables

Option #2 – Explicit Packing with CUDA-aware MPI

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU GPU

CUDA-aware MPI

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU

Option #2 – Explicit Packing with CUDA-aware MPI

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU GPU

CUDA-aware MPI

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU

Research Questions
• Datatype optimization

• hand packed kernels
• pipelining packing and sends (receives and unpacking)

• GPU triggered communication
• stream triggered
• kernel triggered
• graph triggered

• Better abstractions and optimizations
• GPU-enabled partitioned communication
• Nearest neighbor collective communication
• Partitioned nearest neighbor collective communication

GPU Triggered Communication

LibMP Overview

20

• LibMP - a lightweight messaging library built on top of LibGDSync
APIs to support GPUDirect asynchronous communication

• LibMP key features:
• A thin layer built on top of IB Verbs and LibGDSync
• MPI used to setup IB connections
• No MPI calls are used for actual communications
• Uses only point-to-point and one-sided communications (no collectives)
• No tags, no wildcards, no data types
• Could be used to combine GPUDirect Async with GPUDirect RDMA

Source: https://github.com/gpudirect/libmp

LibMP Benchmark Overview

• 3D regular halo stencil computation
• Problem size: 50 x 50 x 50 cells per process
• Process grid: 4 x 4 x 4 (1 GPU per process)
• Configurable halo size
• Configurable compute kernel execution time
• Two versions

• Explicit – 26 sends and 26 receives from each process
• Implicit – 6 sends and 6 receives posted in order

LibMP Benchmark Configurations

Pack/Unpack
• One kernel for all packs
• Separate kernel for each pack

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU GPU

CUDA-aware MPI

LibMP Benchmark Configurations

Memory location to pack/unpack
• GPU memory
• CPU memory (pinned)

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU GPU

CUDA-aware MPI

Compute

Pack

Post sends & recvs

Waitall

Unpack

CPU GPU

CUDA-aware MPI

LibMP Benchmark Configurations

Send/Receive modes
• nonblocking send (MPI_Isend)
• persistent send (MPI_Send_init/Start/Wait)
• LibMP CPU triggered (mp_isend)
• LibMP stream triggered

(mp_send_prepare/isend_post_on_stream)
• LibMP graph triggered

LibMP Benchmark Configurations Overview
• Pack/Unpack

• One kernel for all packs
• Separate kernel for each pack

• Memory location to pack/unpack
• GPU memory
• CPU memory (pinned)

• Send/Receive modes
• nonblocking send (MPI_Isend)
• persistent send (MPI_Send_init/MPI_Start/MPI_Wait)
• LibMP CPU triggered (mp_isend)
• LibMP stream triggered (mp_send_prepare/mp_isend_post_on_stream)
• LibMP graph triggered

26

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

7.00E+00

8.00E+00

9.00E+00

Execution Time for Explicit Halo Exchange

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

7.00E+00

8.00E+00

9.00E+00

Separate GPU
Nonblocking

Separate GPU
Persistent

Separate GPU LibMP
Sync

Separate GPU LibMP
Stream

Separate CPU
Nonblocking

Separate CPU
Persistent

Separate CPU LibMP
Sync

Separate CPU LibMP
Stream

Execution Time for Implicit Halo Exchange

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

7.00E+00

8.00E+00

9.00E+00

Execution Time for Explicit and Implicit Halo Exchange

Unexpected Messages on GPUs

29

NVIDIA nsys Trace of stream-triggered Comb + LibMP iteration.

NVIDIA nsys Trace of stream-triggered Comb + LibMP iteration with short sleep added before receive
Unexpected messages to GPU device can cause performance to collapse in current implementation.

Summary

30

• Evaluation and exploration of various GPU communication
approaches
• See poster presentation by Thomas Hines on “Experimenting with

LibMP”
• Developing performance models and best practices to optimize GPU

communication
• Designing better abstractions to hide these complexities from

application developers and optimize these primitives
• Incorporating these results into NNSA relevant applications

	GPU Point-to-Point Communication
	5-Year Project Roadmap
	GPU Communication Choices
	Option #0 – Using CPU for communication
	Option #1 – Using CUDA-aware MPI
	CUDA-aware MPI Advantages
	Option #2 – Explicit Packing with CUDA-aware MPI
	Evaluation using Higrad
	Higrad
	Evaluation – Option #0 vs. #1
	Evaluation – Option #0 vs. #1 vs. #2
	MPI Datatype Performance on GPUs
	MPI Datatypes on GPUs
	MPI Datatypes on GPUs
	MPI Datatypes on GPUs
	Option #2 – Explicit Packing with CUDA-aware MPI
	Option #2 – Explicit Packing with CUDA-aware MPI
	Research Questions
	GPU Triggered Communication
	LibMP Overview
	LibMP Benchmark Overview
	Slide Number 22
	Slide Number 23
	Slide Number 24
	LibMP Benchmark Configurations Overview
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Unexpected Messages on GPUs
	Summary

