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GPU Communication Choices



Option #0 – Using CPU for communication
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Option #1 – Using CUDA-aware MPI
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CUDA-aware MPI Advantages
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Option #2 – Explicit Packing with CUDA-aware MPI
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Evaluation using Higrad
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Higrad
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• LANL Fortran+OpenACC Application
• Main communication involves a regular halo exchange of the mesh

• Implicitly sends the edges and corners during the exchange
• Uses MPI Datatypes for sending faces

• Test the potential gains with minimal changes to code
• Original version copied data to the GPU, executed the compute 

kernel, copied the data back to CPU, used MPI for communication, 
and copied the data back to the GPU (Option #0)

• Executed the application using CUDA-aware MPI (data is on GPU 
and sent from GPU – Option #1)



Evaluation – Option #0 vs. #1
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Xena (UNM) Chicoma (LANL)
GPU: Nvidia K40M
300 by 300 by 375 grid
4 nodes, 1 rank per node, 1 GPU per node

OpenMPI 3.1.5 (PGI Compilers)

GPU: Nvidia A100
500 by 500 by 625
1 Node, 4 ranks per node, 4 GPUs per 
node, 1 GPU per task*
OpenMPI 3.1.5 (PGI Compilers)

Time (minutes) Base CUDA-aware MPI

Total 16.8169  64.45

Communication 2.9039 49.7395

Communication % 17.2678% 77.1754%

Base CUDA-aware MPI

16.097  107.8532

3.2639 95.653

20.2764% 88.6882%



Evaluation – Option #0 vs. #1 vs. #2
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Execution Time Base CUDA-aware MPI GPU Packing Kernel

Total Time (minutes) 16.8169  64.45 14.0814

Communication Time (minutes) 2.9039 49.7395 0.3323

Communication % 17.2678% 77.1754% 2.3596%

Execution Time Base CUDA-aware MPI GPU Packing Kernel

Total Time (minutes) 16.097  107.8532 12.867

Communication Time (minutes) 3.2639 95.653 0.5189

Communication % 20.2764% 88.6882% 4.0329%

Xena (UNM)

Chicoma (LANL)



MPI Datatype Performance on GPUs



MPI Datatypes on GPUs
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200x200x200 array of five variables



MPI Datatypes on GPUs
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200x200x200 array of five variables



MPI Datatypes on GPUs
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200x200x200 array of five variables



Option #2 – Explicit Packing with CUDA-aware MPI
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Option #2 – Explicit Packing with CUDA-aware MPI
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Research Questions
• Datatype optimization 

• hand packed kernels
• pipelining packing and sends (receives and unpacking)

• GPU triggered communication
• stream triggered 
• kernel triggered
• graph triggered

• Better abstractions and optimizations
• GPU-enabled partitioned communication 
• Nearest neighbor collective communication 
• Partitioned nearest neighbor collective communication



GPU Triggered Communication



LibMP Overview
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• LibMP - a lightweight messaging library built on top of LibGDSync
APIs to support GPUDirect asynchronous communication 

• LibMP key features:
• A thin layer built on top of IB Verbs and LibGDSync
• MPI used to setup IB connections
• No MPI calls are used for actual communications
• Uses only point-to-point and one-sided communications (no collectives)
• No tags, no wildcards, no data types
• Could be used to combine GPUDirect Async with GPUDirect RDMA

Source: https://github.com/gpudirect/libmp



LibMP Benchmark Overview

• 3D regular halo stencil computation 
• Problem size: 50 x 50 x 50 cells per process
• Process grid: 4 x 4 x 4 (1 GPU per process)
• Configurable halo size
• Configurable compute kernel execution time
• Two versions

• Explicit – 26 sends and 26 receives from each process
• Implicit – 6 sends and 6 receives posted in order 



LibMP Benchmark Configurations

Pack/Unpack
• One kernel for all packs
• Separate kernel for each pack
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LibMP Benchmark Configurations

Memory location to pack/unpack
• GPU memory
• CPU memory (pinned)
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LibMP Benchmark Configurations

Send/Receive modes
• nonblocking send (MPI_Isend)
• persistent send (MPI_Send_init/Start/Wait)
• LibMP CPU triggered (mp_isend)
• LibMP stream triggered 

(mp_send_prepare/isend_post_on_stream)
• LibMP graph triggered



LibMP Benchmark Configurations Overview
• Pack/Unpack

• One kernel for all packs
• Separate kernel for each pack

• Memory location to pack/unpack
• GPU memory
• CPU memory (pinned)

• Send/Receive modes
• nonblocking send (MPI_Isend)
• persistent send (MPI_Send_init/MPI_Start/MPI_Wait)
• LibMP CPU triggered (mp_isend)
• LibMP stream triggered (mp_send_prepare/mp_isend_post_on_stream)
• LibMP graph triggered
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Unexpected Messages on GPUs
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NVIDIA nsys Trace of stream-triggered Comb + LibMP iteration.

NVIDIA nsys Trace of stream-triggered Comb + LibMP iteration with short sleep added before receive 
Unexpected messages to GPU device can cause performance to collapse in current implementation.



Summary
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• Evaluation and exploration of various GPU communication 
approaches
• See poster presentation by Thomas Hines on “Experimenting with 

LibMP”
• Developing performance models and best practices to optimize GPU 

communication 
• Designing better abstractions to hide these complexities from 

application developers and optimize these primitives 
• Incorporating these results into NNSA relevant applications 
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